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SUMMARY 

An approximate theory is developed for predicting the rate of heat 
transfer to the stagnation region of blunt bodies Fn hypersonic flight. 
Attention is focused on the case where wall temperature is small compared 
to stagnation temperature. The theoretical heat-transfer rate at the 
stagnation point of a h&spherical body is found to agree with available 
experimental data. The effect of yaw on heat transfer to a cylindrical 
stagnation region is treated at some length, and it is predicted that 
large yaw should cause sizable reductions in heat-transfer rate. 

INTRODUCTION 

It has been suggested (see refs. 1 and 2) that blunting or rounding 
the leading edges of Wings and bodies might substantislly alleviate aero- 
dynamic heating of these regions in hypersonic flight. There is, of 
course, the added advantage that round leatig edges are structurally 
more practical than sharp leading edges, especislly when the problem of 
absorbing heat is considered. Another consequence of blunting may be 
increased pressure drag. Ih the case of bsllistic vehicles, this conse- 
quence is often an advantage (see ref. 1). In the case of glide vehicles, 
however, or more generally any vehicles required to operate for sustained 
periods in more or less level hypersonic flight, increased drag may be 
viewed as a disadvantage. 

Now, to be sure, rounding or blunting the nose of a body does not 
always increase drag. Indeed, smsll smounta of blunting may reduce the 
drag of a body (see, e.g., refs. 3 and 4). The same, however, cannot be 
said for blunting the leading edge of a wing. Even small blunting causes 
a sizable increase in drag. It is natural, then, to look for methods of 
minimizing this drag penalty, and the possibility of yawing or sweeping 
the leading edge comes to mind. Impact pressures should be, according to 
simple-sweep theory, decreased in proportion to the cosine squared of the 
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angle of sweep; hence, as is intuitively obvious, large sweep should 
substantially reduce the drag penalty due to blunting. In view of this . 

- 
possibility it is important to inquire of the effect of yaw or sweep on 
heat transfer to a blunt leading edge. 

The purpose of this paper is to investigate theoreticslly the heat 
transfer to the stagnation regions of bodies in hypersonic flight, includ- 
ing the effects of yaw, by a stiplified method which is suited to take 
account of real gas effects such as dissociation. This method, which was 
previously given limited distribution, is used along with recent estimates 
of transport properties for high temperature-air, and the solutions are-.. ..-_ 
compared with some heat transfer results for blunt shapes. 

A,B,C, 
D,E,F, 
G )... > 

CP 

h 

k 

M 

integration constants 

specific heat at constant pressure, ft-lb/slug OR 

specific enthalpy, ft-lb/slug - l 

coefficient of thermal conductivity, ft-lb/ft-set oR 

Mach number, dimensionless 

n exponent of temperature in thermal conductivity and viscosity 
functions (see eqs. (37) and (38)), dimensionless 

Nu Nusselt number based on a length 2Rb and stagnation tempera- 
ture conditions, dimensionless. 

static pressure, lb/f-t2 (unless otherwise specified) 

Prandtl number, dimensionless 

heat flux per unit area, ft-lb/ft2-set 

heat flux per unit area at zero yaw, ft-lb/ft2-set 

heat flux per unit area at yaw angle A, ft-lb/ft2-set 

gas constant, ft-lb/slug OR 

SYMBOLS 
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Rb 

Rs 

Re 

F,e,cp 

T 

% 

TO 

To (A) 

Tr 

Tt 

urn 

UYVYW 

UYV 

X¶YYZ 

x,r 

6 

radius of curvature of body at the staghation point, f-t 

radius of curvature of the shock wave at the stagnation stresm- 
line, ft 

Reynolds number, based on twice the radius of curvature of the 
body at the stagnation point, dimensionless 

spherical coordinates, feet, degrees, and degrees, respectively 

static temperature, OR 

temperature of the body, 41 

temperature at the interface, x = 0, with body at zero yaw, OR 

temperature at the interface, 
h, 41 

x = 0,tithbodyatangI.e of yaw 

recovery temperature, 91 

stagnation temperature, 41 

stream velocity, ft/sec 

velocity components in the x, y, and z 
ft/sec 

directions, respectively, 

velocity components in the x and r 
ft/sec 

directions, respectively, 

Cartesian coordinates, ft 

cylindrical coordinates, f-t 

flow deflection angle, deg 

r-R 
dimensionless coordinate, b xb - x 

T 
or 

%I 

ratio of specific heat at constant pressure to specific heat at 
constant volume, dimensionless 
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7s 

h 

P 

rl 

a function of density change across a shock wave, 
(Pg/Pm) + 1 
b,/P,) - 1’ 

. 

dimensionless 

angle of yaw, deg 

density, slugs/cu ft 

r 

T 
kdT, a function of the coefficient of themal conductivity 

43 
and of temperature, ft-lb/ft-set (unless otherwise specified) 

a acute angle of shock wave relative to stream velocity vector, 
deg 

CL coefficient of viscosity, slugs/ft set 

PO coefficient of viscosity at temperature To, sluge/ft set 

PJN coefficient of viscosity at temperature T,(A) Y slugs/ft set 

Subscripts 

conditions just behind shock wave on the stagnation streamline 

conditions at the stagnation -point of the body 

conditions at the interface between regions 1 and 2 on the stag- 
nation streamline (see sketch (b)) 

c ; 

d 

00 conditions in the free stream 
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Superscripts 

first derivative with respect to the x coordinate 

second derivative with respect to the x coordinate 

TEEORY 

General Equations in Cartesian Coordinates 

The analysis proceeds from the equations of momentum, continuity, 
energy, and state for continuum fluid flow. The x, y, and z momentum 
equations are, respectively, 

au 
pz +P u ( 

au -+ v > 
22 2 a 

ax g+w2 =‘ax’7s [C 
llg+s+g + >I 

av+p u ( 
hV 

p at -+v i3V &J ap 2a au av aw 
ax ay 

+w- aZ > 
=----- p 

ay 3ay [( z+ay+z + >I 

n[G+ g)] 

0) 

(2) 
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aw 
( 

aw aw aw Px+P u,+yy+w, 1 
ap 2a =----- p 
aZ 3 a2 C( 

k+k+aw 
ax ay aZ + )I 

~e(~~)+~[d$?~)]+ 

The continuity equation is 

and the energy equation is 

(3) 

. 

. 
-- 

while the equation of state is taken in the fom 

P = P(P,T) (6) 



NACA TN 4229 

Derivations of the momentum and energy equations are given in numerous 
sources (see, e.g., refs. 5, 6, and 7). Note that the coefficients of 
viscosity and thermal conductivity, and the heat capacity have been 
treated as variables. It is intended that by so doing a more accurate 
solution will be obtained for hypersonic flows with their characteristi- 
cally large temperature and pressure gradients. 

Let us now consider the particular flows of interest in this paper, 
namely, those in the region of a stagnation point. 

Model of Flow and Method of Analysis 

It is instructive in setting up the model to consider the qualitative 
aspects of temperature and velocity variations in the flow slang the stag- 
nation streamline. Restrictin@; the snslysis to steady hypersonic flow, 
that is &sin 6 >>l, we will assume that the surface temperature is low 
compared to the stagnation temperature of the air. This assumption seems 
qtite reasonable since practical surface materials till probably be 
destroyed if surface temperatures are allowed to approach stagnation 
temperature. It will be assumed further that the Reynolds number of the 
flow is lerge enough so that heat conduction and viscous shearing in the 
shock process is distinct and separate from the corresponw phenomena 
occurring in the boundary layer adjacent to the surface of the body. 
Accordingly, temperature and velocity should vary along the stagnation 
streamline similar to the manner shown in sketch (a). 

Shodk 
wave 

Sketch (a) 

surface 
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There is an abrupt and large increase in tempemture and decrease in 
velocity of the air as it passes through the bow shock. Proceeding from 
the shock in the direction of the body, temperature continues to increase 
slowly while the velocity decreases slowly towards zero. Near the surface 
of the body, the air t-era-Lure ceases to increase and, in fact, begins 
to fall off steeply in the direction of the body temperature. The veloc- 
ity of the flow must, of course, be close to zero in this region. 

On the basis of these observations the following simplified model is 
proposed and employed throughout this study of heat transfer in a stagna- 
tion region. 

“al _ 

Region 2 

0 %X 

Intrrfaoo 

betworn regions 
I and 2 

Region I- Incompressible, nonvisoous flow 

Region 2- Low-ve~oofty, oomprersible, visoour flow 

Sketch (b) 

Since & is large compared to 1, Ms is substantially less than 1 and 
the detached shock wave is located a relatively short distance ahead of 
the body surface (i.e., (xs + xb)/Rb < cl). The flow between the shock 
wave and the body surface is divided into two regions. Region 1 is taken 
as a domain of essentially nonviscous, non-heat-conducting, incompressible 
flow while region 2 is taken as a domain of very low speed, but compres- 
sible, viscous,andheat-conducting flow. It is-anticipated further that 
in region 2 the u and v components of velocity till be very small. The 
component of velocity w due to yaw may, of course, take on rather large 
values. 

Now it may be demonstrated with equations (1) and (2) that a'p/ay' 
becomes relatively independent of x along the stagnation streamline in 
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the limit as the disturbed flow extends only a short distance away from 
the body. Inasmuch as this is the type of flow of interest here, it wiU. 
be assumed throughout this analysis that asp/ays is essentially con- 
stant along the stagnation streamline between the shock and the body. 

With these assumptions, the derivative with respect to y of the 
y momentum equation yields a differential equation that becomes tractable, 
both in regions 1 and 2, when terms that vanish in the neighborhood of the 
stagnation streamline are dropped. Approximate solutions to these simpll- 
fied y momentum equations are found for the u velocity along the stag- 
nation streamline in region 1, and for the derivative of this velocity 
along the stagnation streamline in region 2. The constants appearing in 
these solutions are determined by ma;tching the boundary conditions at the 
shock wave and at the surface of the body, and by matching flow conditions 
at the interface. This procedure fixes the locations of the shock wave 
and interface relative to the body. 

. 

The energy equation -is simplified in an analogous manner, and solu- 
tions valid in the neighborhood of the sta@pation streamline are found 
for regions land 2. The rate of heat transfer per unit area to the 
stagnation region of the body follows fram the solution to the energy 
equation for region 2. 

Let us see how these thoughts apply in the case of a two-dimensional 
stagnation region. 

Heat Transfer to a Cylindrical Stagnation Region 

Zero yaw.- This problem has been treated for incompressible flow by 
Howar- 7) and more recently for the compressible flow by Cohen 
and Reshotko (ref. 8). One reason for re-investimting the matter here 
is to obtain compressible flow solutions which can be extended with rela- 
tive ease to the case of a yawed cylinder. In addition it was desired 
to obtain solutions which may be better suited to account for real gas 
effects, such as dissociation. 

To proceed, then, the stagnation streamlines are taken to lie in the 
x-z plane. The origin of the coordinate system is at the interface 
between regions 1 and 2, and the shock-wave and body-surface locations in 
this plane are -xE and xb, respectively (see sketch (b)). For the case 
of zero yaw, the z ccmrponent of velocity and all derivatives with 
respect to z are, of course, identically zero. 

, 

First a solution till be found to the steady-state y momentum 
equation near the stagnation streamline in region 1. Since the flow is 
assumed incompressible and nonviscous in this region, equation (2) 
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simplifies to 

Differentiating equation (7) with respect to y there is obtained 

a av au av 
"g aX +ayax ( > 

2 
--+ 

0 S$ 
+,-,-LEE a2V 

asi! p w 
(8) -- 

On the stagnation streamline v iE identically zero and, therefore, av/ax 
is also zero. In addition, the continuity equation (eq. (4)) becomes, for 
incompressible, two-dimensional flow 

i&+3x=, ax ti 
Using this information with equation (8), one obtains 

a% -u 2 + 
0 

au'= 16 --- 
ax ax p ay2 

(9) 

(10) 

Treating a%/ap as a function of y only, and noting that equation (10) 
becomes a total differential equation along a line y = constant, yields a 
general solution for velocity along the stagnation streamline 

u = AeCX + BemCX O-0 

where the constants A, B, and C are related by 

la% l&x2=-- 
P ay2 =.- -312) - 

Note that the constants may be real or imaginary, depend%ng on the bound- 
ary conditions. 

. 

. . 

. 
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Now it is anticipated that the velocity u will very nearly vanish 
at the interface x = 0 (i.e., in the sense that uo/uE <<l); hence B 
will be approximately -A, and the corresponding approxima;te solution for 
velocity iSI 

U=~EhhcX (13) 

To the same order of approximation, the second derivative of velocity at 
the interface, uofl, also vanishes. The product 2AC is just the velocity 
derivative at the interface and can be evaluated from equations (10) 
and (13), thus 

1 Pp ~CZ~‘E+- --- 
I- P ay2 

Note that the negative root correctly describes the flow in the coordi- 
nate system of sketch (b), since velocity decreases with increasing x. 

Consider next the steady-state y momentum equation near the stagna- 
tion streamline in region 2. In this dcmain viscous terms must, of course, 
be retained and thus the derivative of equation (2) with respect to y 
yields 

+ u ap av + p av au -a5 + v ap av + p av a% 2 
p" axay ay ax aX G + pv ay2 ay ay 0 G 

Now close to the surface of the body the left-hand side of this expres- 
sion is negligible and the right-hand side simplifies so that the equa- 
tion may be written (see Appendix A) 

a a% 
( > 

a% 
ax py =-- ax b-2 (16) 

=In the limit of zero boundary-layer thiCkleES, this Eolution is 
exactly the one to which equation. (11) reduces. 
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Along the stagnation streamline this equation integrates to 

a2u -a% -- 
%F= ay2x+p 

L 

(171 

The constant D is zero since a-%/ax2 = +n = 0 at the interface (x = 0). 
Near the surface of the body, equation (17) can be integrated to obtain 

au 
' ax 

azp x2 -= - --+ poLlo' ay2 2 0.8) 

In order to satisfy the boundary condition at the body surface 

($)b = k)., = 0, it follows frcm equations (18) and (14) that 

2 
xb = 09) 

-- l 

NOW p and ayaf can be evaluated at the shock wave since both are 
considered constant throughout region 1. Ln Appendix B it is demonstrated 
that for two-dimensional flow 

M 

- 

6pm2 tim2 
*- 1)Rs 

@Q) 

where Rs is the rdius of curvature of the shock wave in the stagnation 
region. Substituting equation (20) in equation (19) we obtain 

where R%, is the free-stream Reynolds number based on 2f?b, twice the 
radius of curvature of the body at the stagnation point. Notealsothat 
the effective value of 7, the ratio of specific heats, at the shock mve 
is allowed to vary from the free-stream value. In this way, changes in 
internal molecular energy which are manifest at the high temperatures 
encountered in hypersonic-flight can be considered:- - 
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There remains the problem of solving the energy equation. In 
region 1, the energy equation is simplified by neglecting all the viscous 
and heat-conduction terms. Then, for the two-dimensional problem con- 
sidered here, equation (5) reduces to 

au aT 0 U-+cpax= ax @a 

for which the solution is 

It can be seen from equation (23) that the interface temperature To is 
approximately the stagnation temperature Tt, since the velocity at the 
interface nearly vanishes. The stagnation temperature is, of course, 
given by the Integral equation 

s mTt C#lJ = ‘a?2 
where for very high velocity flow the lower limit of the integral will be 
neglected. 

Next consider the energy equation in region 2. Proceeding in a man- 
ner analogous to that used in studying the y momentum equation in this 
region, we neglect the terms with the factors u, V, h/ax, and aday. 
T&us eque;tion (5) becomes s5n1@y the heat-conduction equation 

(25) 

The coefficient of thermal conductivity, k, is considered a lmown function 
of temperature (pressure is essentially constant). Thus a new function of 
temperature, q,maybe defined such that 

s 

T 
‘rl= k dT (26) 

0 
Then equation (25) may be expressed in terms of the function q 

(27) 
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Inasmuch as the body boundary is cylindrical, itis convenient to use the 
general solution to equation (27) in terms of the polar coordinates (F, 0). 
Thus 

03 

q=A+Bln?+ > 1 sin ng 

(28) 
._ 

The origin of the coordinate system is now taken as the center of curva- 
ture of the body, and 8 as the acute angle.between the radius vector F 
and the stagnation strewine. If a surface temperature is &EsUaed inde- 
pendent of the angle 8, the solution on the stagnation streamline (0= 0) 
reduces to 

'~=qb+Blnf+ 
Rb 

7 c,F [l_ @)=I 
n=; 

(29) 
- 

Letting 2 =l+ 6, where -E: 
Rb 

is very small compared to unity, and 
expanding equation (29) in a series of asceliding powers of E, we obtain 

. 

A- 

+ o(c) 

where G is the constant 6 +r 2nRbn&). It is indicated by this 
n=1 

equation that lo varies essentially linearly with E, since s2/2 is 
negligible compared to E and terms of higher order in B should be 
very small indeed.= Since 6 = (xb - x)/Rb < <l, equation (30) can be 
written 

(31.) 

- 

- 

2The dependence of surface temperature on 8 should be small in the 
stagnation region. 

"It should be pointed out that this argument hinges implicitly on 
the assumption that 9 is a weak functiou of 8 near the stagnation -- 
streamline. 

c 
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According to this expression, the rate of heat transfer per unit area to 
the stagnation region of the body is 

q=-$ I =rl,=A T”kdT 
xb xb s 

% 
(32) 

The st&pation-line coordinate xb is 
and the rate of heat transfer becomes 

substituted from equation (U), 

9 = [8(7E3- 1) i’i’ (2 $$‘2 “;z2 J-Ok dT (33) 

A Nusselt number is defined for interface temperature conditions 
using a characteristic length equal to twice the radius of curvature of 
the body and a temperature potential of (To - Tb); thus 

Nu = -- 2%’ %I 
k,P, - %I 

or, substituting from equation (33) into (34) 

Nu = ($+='4 ($ $z ko;frq) lTok dT (35) 

b 

For a relatively cool body in hypersonic flight, it is possible to dis- 
regard the lower 1Fmit of the integral and the value of body tempera- 
ture !Pb compared to the interface temperature To. 

Note that the solutions given by equations (33) and (35) can be Used 
for the case where viscosity, thermal conductivity, and specific heat are 
arbitrary functions of temperature. For instance, these functions can be 
calculated to include the effects of vibrational and dissociational molec- 
ular energy if the extent to which these energy modes are excited is known 
throughout the flow. It is also useful to consider the case where the 
specific heat is treated as a constant and the viscosity and thermal 
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conductivity as proportional to the nth pour of temperature. In this 

case from equation (24) 
T -Q = 1, TO 

Tt 
+e-l 

m > 

TO 
-= 

( > 

T,R 

T 2% 
Jfoo= 

m 
(36) 

Noting that 

and that 

(38) 

it is seen that the expression for Nimselt number (es. (35)) became6 

and the rate of heat transfer per unit area to the stagnation region of 
the body is, in terms of free-stream conditions, 

(40) 

These considerations complete the zero-yaw analysis. However, before 
undertaking the study of effects of yaw on heat transfer it is appropriate 
to make a few remarks. There is the general question of the legitimacy of r 
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the several assumptions underlying the present treatment of stagcation- 
point flows. In order to shed some light on this matter it is undertaken 
later in the report to examine the solutions obtained to see whether they 
are consistent with these assumptions and with pertinent results obtained 
by others. In this regard it is shown that the presumption of a constant 
second derivative of pressure normal to the stagnation streamline yields 
solutions for the distance between shock wave and body which are quite 
close to observed values. Next, it is demonstrated that, as assumed, the 
velocity u is negligibly small throughout region 2 under continuum flow 
conditions. Then it is shown that the largest of the viscous dissipation 
terms neglected in the energy equation for region 2 is indeed -small cm- 
pared to the heat-conduction terms. It is found too that the analysis 
predicts an amount of heat convected into region 2 which is the proper 
order of magnitude to account for the heat transferred to the body. 
FinalLy, it is shown that under comparable conditions equation (35) of 
this paper predicts essentially the s&me heat transfer as references 7 
and 8. 

In view of these results it would seem that the simplified anslysis 
presented here for stagnation-region flows is, while on the one hand cer- 
tainly approximate, on the other hand quite capable of predicting useful 
information. Accordingly, we proceed to the study of effects of yaw on 
heat transfer. 

Yaw.- In this case the x direction is normal to and the z direc- 
tion ~parallel to the stagnation line of the body (see plan view, 
sketch (c)). Then the z component of velocity has a finite value, but 
all z derivatives are again zero. 

Region I 

\ 

shook wave 

Region I- Incompressible, nonviscous t low 

Region 2- Low velocity, compressible, viaoous flow 

l Sketch (c) 
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The y momentum equation in region 1 , differentiated with respect 
to y, takes the same form as equation (10) on the stagnation streamline. 
Thus the velocity u is again given by the solution 

I. 

1 uz-- C J 
-1. EJil sinh Cx 

p aY= 
(41) 

The z momentum equation for the stagnation streamline in region 1 
becomes, on dropping the negligible terms from equation (3), 

aw u-=0 ax (42) 

which has the solution 

W2 = 7~RTmB&=sin2h 143) 

since the transverse component of velocity is unchanged on passing through 
the shock wave. 

The energy equation for the stagnation streamline in region 1 reduces 
to a form 6dmilan.r to equation (22) 

uau+waw aT 
ax ~+?f?~=O 

which has the solution 

s Tt 
% dT = 

u= + 7mR&,M&2sin2h 

T 2 

(44) 

(45) 

where again the stagnation temperature Tt is given by equation (24.). 
At the interface where the velocity u is negligible, the temperature 
T,(A) is given by the solution to 

s Tt 
CpdT = 

7mRT#m2sin2h 

T,(h) 2 
(46) -. 
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which, for a constant heat capacity, Cp, is 

To(h) 
-= 

Tm 

7mR ( > 2cp 
M&=cos2h 

The differentiated y 
same form on the stagnation 
solution is 

momentum equation for region 2 takes on the 
streamline as equation (16). Eence, the 

au 
%i=- 

and the body stagnation pojllt coordinate is b’&) I= = 2Po(N 

(48) 

(49) 

Now, however, the second derivative of pressure is a function of the 
angle of yaw (see Appendix B), 

6pm%m2cos”h 

(76 - lh,= 

so the stagnation-point coordinate is given by 

(50) 

In region 2, the solutions to the z momentum equation and the energy 
equation are considered simultaneously. The z momentum equation simpli- 
fies (to the order of this analysis), in the region of the stagnation 
streamline, to 
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Similarly, the energy equation near the stagnation streamline in region 2 
may be written (note that aw/ay is zero by symmetry) b 

a= II a= II -+- 
ax2 af +cL 0 

w==(y z (53) - 

In order to facilitate the solution of equation (52), it is helpful 
to observe that the yawed boundary layer, identified with the w compo- 
nent of velocity, resembles the boundary layer on a flat plate. It might 
be anticipated then that, just as in the case of the flat plate, the 
variation of w with x is relatively insensitive to variations of P 
with x. Ln this event equation (52) has the approximate form 

a+ azw 
.+G=O ax (54) 

The solution is taken in polar coordinates in order to conveniently fit . 
the boundary condition that w is identically zero at the body surface. -- 
Then following the same arguments used in deriving equations (29) and (30), 
one obtains on the stagnation streamline 

= 
I 

w=Blnz+ Rb T G-9 [l - (SJ] = I()- g) +ow (55! - 
n=1 - 

where again e=(F/Rb) - 1 < < 1. If second order and higher terms in e 
are neglected, the. z component of velocity on the stagnation streamline 
becomes, in terms of x/xb, 

.- 

w = w, 
( 1 

lx -!g 

whence 

aw -= _ 32 ax % (57) 
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If this result is substituted for the last term in equation (53), 
the energy equation becomes 

3L+E?l+p $2=o 
ax2 ap 0 (58) 

A solution for equation (58) which satisfies symmetry conditions on the 
stagnation streamline and also the boundary conditions that g and p are 
constant along the surface of the body is 

rl(N =~,+Bln $+T c#n[1 - (?j)~]cosn6- $($jr(Fz -Rb=) 
n=l (59) 

where E is a mean value of P in the stagnation region. If equa- 
tion (59) is epnded in terms of 4, 7 takes the following form on the 
stagnation streamline 

q(h) = $, + J c ( -$-sJE +g-)+ow (60) 

The constant J is evaluated by letting 7 be rlo when e is so=xb/Rb 
and is given by the relation 

J= 70 - 'lb 
SO 

+s (1 
0 

The rate of heat transfer per unit area to 
body at angle of yaw h is, frcan equation 

f Eo) + - . . (61) 

the stagnation region of the 
(60) 3 

(62) 

Substituting equations (26) and (61) into this expression and neglecting 
terms of the order e. compared to 1, one obtains 

q(h) = --&c(')k dT + vj (63) 
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Multiplying by and substituting f.qxn equation (51) yields 

For a constant heat capacity it follows qrom equations (23), (43), 
and (47) that 

T,(A) 
TO 

= co&l 

wo 
2 

- = 2Cpsin2h 
TO 

I 

(65) 

If, in addition, the thermal conductivity is proportional to the nth 
power of temperature, then 

1 To(A) cosm+= 
k,(T, - s h 

s) % 
k dT = 

(n + 1) (1 - Q/To) 

and 

Do’ Pr ein2h PrcosY sin2h 
= =L 

aotTo - Tb) I- Tb/To cc, 04 1 - %/To 
(67) 
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Thus equation (64) becomes 

wmb 

ko(To - s) 

{CO&I b - (To~sq~l] + (n +1&r& sin?4 } 

The ratio of equation (f18) to equation (39) is the ratio of the rate 
of heat transfer to the stagnation region of a yawed body to the rate of 
heat transfer to the stagnation region of the ssme body at zero yaw. This 
ratio is 

s(h) _ 
rl+1/2 

cos 
do) l- (%/To) 

;+= {COA b - (&J&y+“1 + b +1kr &y sin=A } 
0 

(69) 

An analogous expression can be obtained for the ratio of Nusselt 
numbers, thus, 

(70) 

where from equation (63) the recovery tqerature, Tr, is the solution to 

s T,(A) wo= 

Tr 
kdT=-T (71) 

However, it should be noted that the assumptions used in the analysis 
tend to be violated when the body temperature approaches recovery condi- 
tion6 . Therefore it should not be expected that eqmtion (71) will. yield 
accurate values for recovery temperature. 
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There remains, of course, the problem of determining 'i;. For the 
purposes of this report p will be taken as the arithmetic average 
between u,(h) and pb, that is, 'i;: = [b(h) + ub]/2.4 In this event 
equation (69) can be written 

yr [l+(To2sJn] s-27‘) (72) 

which in the case of a relatively cool surface (i.e., Tb/ToCOS2h < < 1) 
becomes 

so4 n+1/2 
- = COB 
40) 

h 
( 

cos2h + + Pr sin2h 
> 

Heat Transfer to an Axially Symmetric Stagnation Region 

(73) 

The methods used to calculate the rate of heat transfer to a cylin- 
drical stagnation region can also be applied to the stagnation region of 
a spherical body. This analysis is parallel to that for the cylinder at 
zero yaw and thus the x axis is taken as the stagnation streamline and 
the origin of the coordinate system is placed at the interface between 
the assumed incompressible nonviscous region1 and the VISCOUS, low- 
velocity, compressible region 2. For the purpose of obtaining the solu- 
tions for velocity in regions 1 and 2 on the stagnation streamline, it - 

4Actually this procedure might better be considered the first step in 
an iteration method where b is recalculated on the basfs of the preced- 
ing calculation of T as a function of x. This refinement is not con- 
sidered warranted here where only the gross effects of yaw for angles of 
yaw well less than 90' are of principal interest. As the angle of yaw 
approaches mot the analysis as a whole tends to break down due to the 
violation of the several assumptions predicated on the flow being hyper- 
sonic normal to the axis of the cylinder. 

I 
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is most convenient to consider the momentum and continuity equations in 
cylindrical coordinates (sketch (a)). Because of axial symmetry, all 

c 

/ Region I Region 2 

Stagnatfon 
streamline 

-xs , 0 YX 

Detached Interface 
shock wave bet ween 

regions I and 

Region I - Incompressible, flonvlscous flow 

Region 2- Low-velocity, compressible, viscous flow 

Sketch (d) 

properties are Independent of the angular coordinate and, accordingly, 
the r direction momentum equation becomes 

( 

&V p ,,+vg 
> 

=- 22 2a 
ar -7s cc 

vg+g+;)]+2g(@+ 

Mhile the continuity equation is 

$ CPU> + 5 & brv) = 0 

(74) 

( 75) 

In region 1 where the viscous terms are considered identically zero, 
the r momentum equation (eq. (74)) reduces to 

P u 
( 

hV av -j-v- =- 22 
ax ar > ar 
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Differentiating e (76) with respect to r and dropping terms with 
factors v and which vanish on the stagnation streamline, gives l 

2 

0 z 
+ua2v=-- 1 a=P 

Gh- 67 

Now the continuity equation (eq. (75)) expands to 

au pv+p av Ps+r s=C 

(77) 

(78) 

however, on the axis of symmetry, negJ-ecting terms higher than second 
order in r, 

av v -=- 
&IF r 

(79) 

Thus, for incompressible flow, the continuity equation on the stagnation 
streamline reduces to 

L 

au av 
-+2-=o ax ar (W 

Substituting equation (80) into equation (77) yields 

1 au 2 
0 

u a% 1 azp 
JGi 

r--s-- 
2 ax= PP 

(81) 

which, upon differentiating with respect to x, and assuming 
13% - - = constant, became6 
P ar2 

uab=O 
ax3 

(82) --. 

For nonzero values of the velocity u, this differential equation has as 
a solution 

(83) 
. 



NACA TIT 4229 
I 

. 
The value of velocity at the interface, uo, is again 

small. Thus, from equation (81), the first derivative of 
interface is, approximately, 

%I- 4 azP q'- --- 
pa+ 

27 

considered very 
velocity at the 

(84) 

As can be seen from the solution for velocity, equation (83), the second 
derivative of velocity is constant. Therefore the second derivative of 
velocity may be evaluated from equation (81) using conditions just behind 
the shock wave, thus, 

US t= 
Uol’ 2 c--j-- 

2% usps ( ) 
El2 
ar2 s 

(85) 

Substituting for the values of velocity, velocity derivative, and 
second pressure derivative behind the shock wave (see Appendix B) yields 

uo” = 8(3 - 27s) v, 

7s 
2 -1 Rs2 

and 

4myx u, uo’=- . - 
7s +l Rs 

w 

(87) 

Now in region 2, the viscous terms are retained in equation (74). 
Following the procedure used in studying two-dimensional flow (see Appen- 
dix A), the r momentum equation, differentiated with respect to r, is 
simplified to 

g ;$ =-E$ 
X ( > 

which integrates to 

p a% azP --c--x++ 
2ax2 a3 

W) 

(89) 
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and, as in the case of the two-dimensional flow, 
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Ph azp x2 
EC= ---+Ax+B a22 (90) 

The constants A and B are again determined by matching the first and 
second derivatives of velocity at the interface. Thus 

B wo"o t 
(91) 

=- 
2 

At the body &u/ax vanishes, and solving for the coordinate xb from 
equation (90) results in -. ..__ 

xb 

In Appendix B it is shown that 

a’p=- 8 P,u,’ 

ar2 Ts + 1 R,= 

thus frcm equations (%), (87), and (931, it can be shown that 

a2P uo' 
4- 

ar2 j.~~~n' 
= (7 - 1J2 m P, R, R%, 

(3 - w>= PO Rb 

(92) 
. 

(93) 

(94) 

which is large compared to unity for any reasonably large value of 
Reynolds number (of the order of hundreds or greater). Therefore, if 
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. 
quantities of the order of unity are neglected in equation @2), the 
staguation point coordinate reduces to 

xb= = (95) 

which is identical in form to the relation for body surface coordinate 
in the two-dImensional flow (eq. (1-g)). 

Next, in region 1 the viscous dissipation and heat-conduction term 
are again neglected in the energy equation, and terms that vanish by 
reasons of symmetry along the stagnation streamline are dropped. Thus 
the energy equation for region 1 takes the same form as equation (23) for 
the two-dimensional problem and, since the interface velocity is slnall, 
the interface temperature To is again approximately the stagnation tem- 
perature Tt. 

In region 2, the heat-conduction terms in the energy equation pre- 
dominate, and the equation reduces to the three-dimensional Laplace 
equation in the variable q 

azs a27 a'7 2+ay2+~=0 
ax (96) 

Ln order to fit the boundary conditions on a spherical surface, the 
solution is given in terms of spherical coordinates (2, 8, and cp). The 
general solution which preserves symmetry about the x axis (i.e., which 
is independent of cp) is 

q =A +g+ r (cnFn+,&)Pn(cos 6) 
n=l 

(97) 

where P,(cos 6) is the nth order Legendre polyrmnial in COB 8. E it 
is required that 71 be a constant, $ , onthe surface of the body, eqm- 
tion (97) can be reduced, on the stagnation streaslllne, to 
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then expanding in terms of B = -?- - 1 < < 1, results in 
Rb 

. 

q = ThD + L(e - 3) + . . . (99) 
co 

where L is - B + 
c Rb n=l 

Cn(S?n $ l)Rbnm Neglecting the quadratic term in 
L.. - 

- _ 

d, evaluating q at the interface, and bansformIng to the variable x, 
one obtains for equation (99) on the stagnation streamline 

Then the rate of heat transfer to the stagnation point is 

q&-g = ‘lo -7b 1 =- 
xb xb s 

TO 
kdT 

Tb 
( 101) . 

which is identical in form with the zero-yaw solution for the two- 
dimensional-flow problem (eq. (31)). Note that in Appendix B the second 
derivative of pressure given by equation (~18) is larger by a factor 
of b/3 than it is for the corresponding two-dimensional-flow case with 
the same shock-wave curvature (eq. (B17)) 
tion (95) is changed by the factor (3/4)lj4 

Thus q given by equa- 
and the rate of heat trans- 

fer to an axially symmetric region becomes 

while the corresponding expression for Nusselt number is 
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Examination of Analysis and Assump~3zr.t~ 

A number of assumptions have been made in the theoretical analysis, 
and it is desirable now to show that the solutions obtained are both 
realistic and consistent tith these assumptions. In particular, it will 
be shown that the presumption of a constant second derivative of pressure 
normalto the stagnation streamline yields solutions for the distance 
between shock wave and body &ich are reasonably close to observed values. 
Secondly, it will be demonstrated that the u velocity throughout 
region 2 is indeed small, as assumed in the analysis, if the Reynolds num- 
ber is large enough for continuum flow conditions. In addition, it will 
be shown that for region 2 the viscous-dissipation terms due to the 
u and v component velocity derivatives are small compared to the heat- 
conduction terms in the energy equation, again provided the Reynolds num- 
ber is not too small. These findings, then, help to justify the manner 
in which the momentum and energy equations were treated in the analysis. 

Now it is obvious that the assumption of an abrqt transition from 
nontiscous, convective flow to vi&us, conductive flow is a substantial 
idealization of the actual flow.5 It is possible, however, to make a 
gross check on the self-consistency of this model by c-ring the amount 
of heat convected across the interface with the amount conducted to the 
body surface. When this is done it is found that from a heat-flow point 
of view, the model is self-consistent (i.e., heat convected provides for 
heat conducted). 

As a final point, a cqrison will be made between the analysis of 
this paper and the heat-transfer solutions for low-velocity flow given by 
Howarth (ref. 7) and Cohen and Reshotko (ref. 8). 

Distance between shock wave and body.- Consider first axially 
symmetric flow. The velocity in region 1 was found to be (es. (83)) 

u=u o +uo’ x f- 
“” 3 

(104) 

5Strictly speaking, this idealized model should be considered simply 
a first approximation to the correct situation. A second approximation 
would be to divide the dcanain between the body and shock wave into three 
regions rather than two as was done here. 
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Then, the shock-wave coordinate must be 

X6 = us’ - uot 
uo” (105) 

It can be shown from the relations in Appendix B and equations (84) 
and (85) that us’ = - 4v, (7, + lb, 

4u; 

(7s + l)R, 
JmF-3 

uo" = 8(3 - 27) U, 

7s 
2 - 1 R,= 

Substituting these relations into equation (105) yields 

x8 -= - (7, - l)fl - 4-1 

Rs 2x3 - 27,) 
(107) 

Note that for 7s = 1.5, uof' vanishes and the velocity profile becomes 
linear. For this case x6/R, reduces to (7, - 1)/k. 

The actual distance between the body and the shock wave is, of course, 
the sum of x6 and xb. However, ft can be shown from equations (95) and 
(107) that xb is small compared to xs for reasonably large Reynolds 
numbers, and xb will therefore be neglected. The ratio xs/Rs calcu- 
lated from equation (107) for ys equal 1.4 is 0.105. Measurements of 
xs/Rb taken from spark photographs of high-velocity spheres presented 
by Charters end Thomas (ref. 9) and Dugundji (ref. 10) approach this 
value closely at high Mach numbers (i.e., X&Q, about 0.11 at Mach num- 
ber 4). Heybey (ref. ll) has developed a theory which fits the data of 
references 9 and 10 closely and, for the limit of infinite Mach number, 
predicts x,/Rb about 0.12. Thus it is seen that at high Mach numbers, 
the assumption that the second derivative of pressure is constant and 
that the ratio Rb/Rs is near unity yields results which are consistent 
with experimentally observed distances between the shock wave and a 
spherical body, as well as with the theory of Heybey . 
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. 
It is of interest to calculate the shock-wave coordinate for two- 

dimensional flow as well. Recall that the solution for velocity in 
region 1 for this case is 

u = L&J. sinh cx c 

and thus 

au -= uo’ cash Cx 
3X 

008) 

009) 

The velocity derivatives at the shock wave and at the interface, given 
in Appendix B, are, respectively, 

us’ = - 2um 

(7, f l)R, 

uo ‘,- v,m ---=- 
(Ts + lb, 

Then the product Cx, is givenby 

Cx, = arc cash 
& 

With Cx, Imown and the velocity at the shock wave 

7s -1 
us = 

Ys + 1 
% 

The shock-wave coordinate becomes 

x, -= - 
RS 

uw 

(u-2) 

W3) 
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For a ys of 1.4, Cx, takes the value 0.75 and since the sinh func- 
tion is very nearly linear over this range, rather close bounds on the 
shock-wave coordinate are iqosed by 

or 

(115) 

The exact theoretical solution for xs/Rs at Ts = 1.4 is 0.236. 
According to the theory then, a shock wave with given radius of curvature 
should be detached from a cylindrical body about twice as far as from a 
sphere, assuming R&b m 1. 

Magnitude of velocity in region 2.- The y momentum equation in 
region 2 was reduced to I - 

&l 
x= 

azp x2 --- 
82-2 2 

+ lJ& (116) 

The left side of this equation may be approximated by 2 (pu) with the 

preswtion that velocity in region 2 is small. Then equation (116) may 
be integrated to 

azp x3 pu=--- 

w 6 + I.L&x + clouo (117) 

Solving for uo, noting that velocity vanishes at xb, and substituting 
from equations (14) and (19)) one obtains 

u. = - $qxb L/T W3) 
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. 
It follows that the ratio of interface velocity to the velocity at the 
shock wave is given by 

UO 
2 0 us = (us) 

whLch on substituting the relations given 5.n Appendix B for uo' and us 
becomes 

020) 

It can be seen that for large Reynolds numbers, of the order of 
hundreds or greater, the velocity at the interface is small compared to 
the velocity at the shock wave. Since the velocity in region 2 is every- 
where less than at the interface (see eq. (ll7)), the solutions obtained 
for velocity are consistent with the assumption that velocity is small 
throughout region 2. 

. Viscous dissipation in region 2.- Although the derfvative of velocity 
vanishes at the body surface, it increases parabolically (see eq. (~6)) 
to UC)' at the interface. Since viscous dLssipation terms due to this 
velocity shear were neglected in solving the energy equation, it will be 
shown that the maxirmun value of these terms, which occurs at the interface, 
is small compared to the heat-conduction terms like azq/ax2 (note that by 
continuity av/ay contributes a dissipation term of the same ma - 
au./&). From equation (30) it can be seen that the term a=q/aP1iide as 
nearly constant everywhere along the stagnation streamline in region 2. 
Then the ratio of differential terms in the energy equation is, by 
equations (30) and (~a), 

Rb ( s," k dT)-' (la 

If equation (X9.) is evaluated for constant heat capacity and thermal 
conductivity proportional to the nth power of temperature, there is 
obtained 

~0(ug’)= 
ca2dax21b 

= 18(n + 1) ($QJ2 hr e) 
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Substituting for velocity ratio uo/V, from equations (120) and (34) 
and for the ratio Rb/xb from equation (21), there results 

4110(uo')2 

(a29/aX2)b 
= 16(n + 1)Pr (ST (.y'4 (~~'2(~~'2Re~-1'2(~3) 

Once again the square root of Reynolds number is the predmLnant term for 
conditions of continuum flow and thus the viscous dissipation terms in 
the energy equation are small compared to the conduction terms in region 2. 

Heat convection across the interface, x = O.- Next consider the ratio 

of the heat convected across the interface, pu, 
s 

To CpdT, to the heat 
0 

transfer at the stagnation point of the body, -N'. The value of u. 
given by equation (LL~) and -'lb' from equation (32) yLelds 

p”O 
TO 

TO 

2u,'q2p J, CPdT 
-- 

s gb' o 
cpar=- 3 To 

J!tl k dT 
(124) 

Again evaluating for constant heat capacity and the nth power tempera- 
ture function for thermal conductivity, and rioting from equations (14) 
and (19) that uo'xb2 reduces to -(~JL~/P), one obtains 

p”oCpTo 
'lb' 

= 2 Pr(n + 1) (125) 

This ratio is the order of unity, and thus the right magnitude of heat 
is convected across the interface to balance the heat conducted to the 
body. The above result also provides a check on the value of xb which 
was obtainedbymatching uof as a boundary condition of the y momen- 
tum equation. 
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Low-velocity heat transfer.- For hypersonic velocities it was found 
that taking shock-wave curvature equal to body curvature on the stagnation 
streamline gave approxtitely the correct answer for the distance between 
the body and the shock wave, so presumably the ratio Rb/Rs should be 
taken near unity when calculatfng the heat transfer as well. Undoubtedly 
this ratio will be somewhat less than unity for low Mach number supersonic 
flow, and it is of interest to see what the solutions developed in this 
paper will predict for this case (even though the assumptions made in the 
analysis are not expected to hold as well for the low-velocity flow con- 
ditions). For this 

p"" 
ose it is convenient to express the body coordinate 

xb b terms Of (aV ay) o which by continuity equals -I+,'. From equa- 
tions (91, (14), and (19) 

xb = Jii (1% 

then solving for Husselt number from equations (32) and (34) for the case 
of the cool wall (Tb/To < <l, and n = l/2) one obtains 

The method of boundary-layer solution for low-velocity flow about a cylin- 
der given in reference 7, yields for the derivative of velocity component 
normal to the stagnation streamline at the edge of the boundary layer, in 
the notation of this paper, 

0 av 3.q 
ay =- % 

Substituting in equation (127) results in 

Nu = 0.92 Reali 

(128 1 

where the small differences between ps and p. are neglected. The con- 
stant 0.92 compares favorably -with the value 0.95 given by Howarth for 
Fr = 0.72. This agreement is especially remarkable in the Ught of the 
fact that the analysis of reference 7 is for constant thermal properties, 
while variatfon in thermal properties is an essential feature of this 
analysis. 
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Cohen and Reshotko (ref. 8) find that the solution for a compressible 
boundary layer gives the following relation at the stagnation point of an 
axially symmetric body 

for the case of a cool wall and a Prandtl number 0.7. If the radial 
ponent of velocity v is taken proportional to y, the ordinate can 
elmnated and equation (129) reduces to 

com- 
be 

Nil= 0.440 I$) J 
P\OViQYlo 

P 
030) 

The factor 0.440 given by Cohen and Reshotko compares favorably with the 
factor 0.47 given in equation (127). 

RIWT-TRANSFER RESULTS FOR XUNT SHAPES IN HYPERSONIC FLIGRT . 

Temperatures in the disturbed flow about-vehicles in hypersonic - 
flight may be sufficiently large to dissociate air molecules-into atoms :- - --- ._. 
or even to ionize the atoms. At present the chemical reaction rates for. 
these processes are not known with certainty. -Available experimental 
evidence (ref. 12) indicates that air will be in equilibrium throughout - 
the stagnation region flow for vehicles in flight at velocities up to 
26,000 feet per second, and at altitudes up to-about 200,000 feet. At - 
much greater altitudes, the atmosphere is so rarefied that the chemical 
reactions will probably be frozen and the air=- behave essentially as - 
a gas with constant specific heat. These two limiting cases, at least, -- -- -- 
can be treated within the framework of the present analytical results. -. 
For this purpose it will be convenient to consider the heat-transfer rate 
expressed in the form of a parameter which is relatively independent of 
scale size or density. From equation (102), such a parameter is given 
by -- 

031) 

where it has been assumed that the surface temperature is negligible 
compared to To and that the shock-wave curvature equals the body 

. 

curvature in the stagnation region. Equation (1-s) applies in the -_ --- __- . 
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spherical case; the rate of heat transfer to a cylindrical stagnation 
region may be smaller by the factor (3/4)'14 according to equation (33). 
Note that the integral may be evaluated with the thermal conductivity 
coefficients taken at constant pressure, since the pressure is relatively 
invariant along a stagnation streamline. The integrals have been ceLcu- 
lated graphically using the data given in reference 13 and the results 
are shown in figure 1. 

For the case where chemical reactions are frozen, all translational, 
rotational, and vibrational modes of energy are considered fully excited, 
Cp/R is taken a constant at g/2, and the coefficients of viscosity and 
thermal conductivity are taken proportional to the h&f power of tempera- 
ture . The heat-transfer parameter given by equation (13l) for these con- 
ditions is shown in figure 2 for flight velocities from 5,000 to 30,000 
feet per second. 

For the case of chemical. equilibrium, Feldman (ref. 14) has calculated 
the densities and stagnation temperatures which occur behind shock waves, 
and reference 13 gives values for the coefficients of viscosity and thermal 
conductivity. The chemical reactions, which keep the flow in equilibrium, 
cause the thermal conductivity to be much larger than fn the frozen flow, 
but this effect is compensated for by the large decrease in stagnation 
temperature due to the strong heat sinks created by the reactions. lilci- 
dentally Kuo (ref. 15) finds sknilar compensation for the case of heat 
transmitted through the boundary layer along a flat plate. Because of 
the compensating effects, it is not immediately apparent whether the 
integral in equation (131) will be increased or decreased by the dissocia- 
tion and ionization reactions. In all the cases calculated it is found 
that the integral is slightly greater under equilibrium conditions. In 
addition, both of the other factors in equation (131) are increased slightly 
by the chemical reactions leading to equilibrium. The density ratio across 
a normal shock may increase more than a factor of 2 (see ref. 14), but the 
heat-transfer rate varies only as the fourth root of this ratio and is not 
strongly influenced. Reference 13 finds that the coefficient of tiscosity 
is increased somewhat at equilfbrium, but this also is compensated by the 
decrease in stagnation temperature. The resulting ratio &l-b is 
increased slightly, but again the effect on heat transfer is weakened by 
the square-root dependence on this factor. The total result of Increases 
in all factors is that the parameter qffbRe,-1/2 is the order of 30 per- 
cent greater for stagnation region flow in equilibrium than for such flow 
in which the chemical reactions are frozen. The difference is indicated 
by the two curves in figure 2. 

The heat transfer calculated for the equilibrium flow is ti satis- 
factory agreement with the experimental results reported by Rose and 
Riddell (ref. 16) as indicated in figure 2. It may be noted that there 
is a few percent change in the heat-transfer parameter due to different 
ambient temperature and pressure conditions which occur at different 
altitudes, but in view of the order of the agproximations inherent in the 
theory and. of the f20-percent variation in experimental results, the 
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change is not significant enough to be shown in figure 2. The theoretical 
results for. eq+l.Ibrium flow also agree with.numeri.csLL integrations of _ 
more complete boundary-layer equations, including chemical reaction terms, 
which have been made by Fay and Riddell (ref. 17). Thus it is concluded 
that the approximate theory presented in this-report retains the essential 
relationships which influence stagnation-region heat transfer. 

- . 

-- 
In view of the foregoing results, it seems reasonable that the present 

theory would also yield approximately correct values for the effects of- 
yaw. Figure 3 shows the product of the secant of the yaw engle and the 
ratio of the stagnation-region heat flux at yaw to the flux at zero yaw, 
for the case where the wall temperature is negligible compared to the 
stagnation temperature. This quantity, q(h)/q(O)cos h, equals the ratio 
of the heat flux per unit of span normalto @e stream velocity, to the 
same heat flux at zero yaw. The ratio of the heat flux per unit area is 
just q(h)/q(O), of course. The frozen flow case was calculated from 
equation (73) where the Prandtl number was tsken equal to 0.75, and this 
result is independent of velocity. The equilibrium flow heat trsnsfer 
was calculated for flight at 26,000 f&et per second at lOQ,OOO and 150,000 
feet altitude from the relation 

cl.04 qocos= 

4 

s To(h) 
k dT + 

po(0)U,=sin=A 
0 4 

s 

TOkdk dT 

0 

(132) 

. 
- . 

. 

which is derived from equations (33) snd (64). At small angles of yaw, 
the effect of yaw is to reduce heat flux slightly more in the chemically 
frozen flow than in the two equilibrium flow cases shown. This is due 
prFmarily to particular variations in the integral of thermal conductivity 
with stagnation temperature in the equilibrium flow (fig. 1) and is not 

-- necessarily typical. At larger angles of yaw, the reduction in heat 
transfer is about the same in either case. As shown in figure 3, the 
stagnation-region heat flux per unit span is reduced approximately by the 
factor (cos h)"2 at large angles of yaw up to 70'. The corresponding 
heat flux per unit area is reduced by about the factor (cos h)3'2. 

The effect of wall temperature on the reduction in heat flux caused 
by yaw is shown in figure 4. The heat-transfer rates are graphed for 
wall temperature to-stmation temperature ratios of 0.2, 0.1, 0.05, 0.02, 
0.01, end 0 for flow in which the Prandtl number is equal to 0.75 and the 
dissociation reactions are frozen in a state of no dissociation (note 
that vibrational energy may be excited, however, without appreciable 
influence on the ratio, q(A)/q(O)). At high yaw engles, the viscous 
crossflow is the predominant factor contributing to the stagnation-region 
heat transfer. The principal effect of high wall temperature is to main- 
tain sizable air temperature, and therefore sizable viscosity and viscous 

- 

.- 
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dissipation (see eq. (58)) throughout the crossflow boundary layer. 
As a consequence, the stagnation-region heat flux per unit span does not 
decrease monotonically with increasing yaw angle, but goes through minima 
as shown in figure 4. As the wall temperature is reduced, the viscosity 
near the body gradually becomes negligible compared to the viscosity near 
the edge of the boundary layer (i.e., at the interface x = 0). The 
results are not strongly influenced until the wall temperature is depressed 
to the order of 0.1 the stagnation temperature. Then as wall temperature 
is further decreased, the heat flux rapidly approaches the limiting value 
given by equation (73). Because of strong compensating effects, similar 
to those which occur in the cold-wall case at zero yaw, it is likely that 
the effect of wall temperature on heat transfer to yawed shapes fn equi- 
librium flow will be quite similar to that shown in figure 4. 

CONCLUDING REMARKS 

The theory for heat flux to the stagnation region of blunt axially 
symmetric shapes in hypersonic flight, which is developed in this report, 
is found to agree favorably with other theoretical results and with avail- 
able expertiental evidence. It is concluded that this theory, though 
approximate, preserves the essential functional relationships which influ- 
ence stagnation-region heat transfer. A similar analysis is made for the 
heat flux to a cylindrical staetion region at angle of yaw. It is 
deduced that wing sweepback should reduce the heat flux per unit area at 
the leading edge approximately by the factor (cos h)3'2, if the wall tem- 
perature is held relatively cool. This will reduce the cooling required 
to alleviate hot spots and the thermal-stress concentrations induced by 
heating in the stagnation region at very high-speed flight. The total 
stagnation-region cooling requtied for a given tig span will also be 
reduced in this case, 
mately as (co6 h)l/=. 

since the heat flux per unit span decreases approxi- 

Ames Aeronautical Laboratory 
National Advisory Ccmnuittee for Aeronautics 

Moffett Field, Calif., Mey 2, 1955 
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APPENDIX A 

NACA TN 4229 

SIK!?LIFICATION OF TEE y IWENTUM EQUXPION IN REGION 2 

The steady-state, two-dLmensiona1 y momentum equation (see eq. (2)), 
differentiated with respect to y, yields 

a% ap av av au a% 2 

p"axay+u-- ay ax -+v3i&+p av +pZ~+Pvaf ay ay 0 5 

Now on the stagnation streamline the velocity v is identically zero 
and therefore all x derivatives of v are zero.- Also, all odd order 
y derivatives of functions like density p, viscosity p, pressure p, 
and velocity u vanish since, by symmetry, these functions are even. 
In addition, it is assumed that near the stagnation streamline the veloc- 
ity u is so small throughout region 2 that terms with this factor may 
be neglected. With this assumption an additional useful relation can be 
deduced from the continuity equation 

Eliminating the terms with factors u, V, or a&y from equation (112) 
there results, as for incompressible flow, 

Note that all 
regions where 

&+aV=, ax ay 
derivatives of the sum 

(A31 

equation (A3) will hold. 
au/ax + av/ay are al.80 zero in the 

Ap~lylng the above considerations simplifies equation (Al) to 

p av2, 
d) 

a2P 
Y 

-7/+2.$ (yg)+&[@+E)l (A41 
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c 

l 

Now it till be assumed, as is usual, that the viscous flow in the region 
of the stagnation point of a blunt body is similar to viscous flow at 
the stagnation point of a body with infinite radius of curvature insofar 
as the velocity derivatives are concerned (i.e., the principle effect of 
the body curvature is to determine the magnitude of the pressure deriva- 
tives). Accordingly, a+p and a%/af will be supposed to vanish 
in the stagnation region. Then expansion of the second member of the 
right side of equation (A4) yields 

c 2~ av h a% a% -m 2 &F~f2ayap+pF > 

in which the only term retained is 2(a2P/ay2>(aY/ay). Similar expansion 
of the last member of equation (A&) gives 

. 
Note that from equation (A3), asu/ay2h is equivalent to -(a%/ay”) and 
wiU. therefore be neglected. The terms retaFned in this equation, then, 
We (ap/ax>(as/aXay> + p(a%/ay&2). TheSe tW?IEi C8n be Cambtied intO 

Equation (Ah) thus is reduced to 

a a% 
s Pax' = ( > a3 +2 -m 

h= 

The derivative av/ay vanishes at the 
the immediate region of the stagnation 
approxFmate frcnn 

as av --- p a/ 
6) b-9 7 (A51 

surface of the body, so that in 
point, equation (A5) takes on the 

This expression will be taken to hold near the stagnation streamline 
throughout region 2. 

. 
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APPENDIXB 

BOUXNRYVlZLCCITl3SARDPRFSSURE DERIVATIVES 

For hypersonic Mach numbers, the density ratio across an oblique 
shock wave is 

PS Ys + 1 
c=r,-1 

then the pressure just downstream of the shock is 

Ps = 
2QJJ3os=a 

Ys + 1 

where d is the acute angle between the shock wave and the normal to the 
free-stream velocity vector (see ref. 18). It can also be shown that the 
V component of velocity just downstream of the shock is 

vs = y 
8 

2+ 1 Q&n d CO8 d (B3) 

while the u component on the stagnation streamline is 

ys -1 
us = 

Y, + 1 he (34) 

In evaluating the derivatives, consider a shock wave with rad.iUS of 
curvature R,. Let s be the 
the stagnation streamline and 
shock-wave coordinates. Then 

distance along this profile measured from 
x(s) and y(s) be the equations for the 

dv 
xi= 

while 

av dx av dy 
axzi'Ga8 

@5) 

8p d=x &? d'y -e 
+ SG + ay d# (B6) 
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In terms of the radius of curvatwe R,, the differential equations for 
x(s) and y(s) are 

dy = Rssin 

and at the stagnation streamline (ds = 0) the following conditions hold 

w -= 
da 1 

1 

and 

Now by continuity and equations (B3) and (BP) 

(B7) 

dx -so 
ds 

EL0 
ds= 

d'x 1 -3- 
ds2 Rs i 

Then, at the stagnation streamline, equations (B5) and (B6) became 

(B9) 

(Bm 
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for two-dimensional flow. 
relation is 

For axially symmetric flow the corresponding 

($)s = - 2(.)s = - (ys4~l)Rs 
(Bl’d 

According to equation (B2) the first-right-hand term of equation (E&O) is 

ti=- 4P&m2 
ds= b, + 1)Rs2 

(=3 1 

while-the next term, - 1 
Rs f9 a 8 

, is evaluated using the x momentum 

eqmtion (eq.(l))which for the nonviscous incompressible flow region on 
the stagnation streamline reduces to 

&L-,,aU 
ax ax 

According to equations (Bll) and (Rl2), equation (Bl4) becomes 

ap 2(Y, - 1) PsUm2 

z = (Y, + l)= R, 

and 

kg = 4(ys 7 1) PsUm2 
ax (Ys + 1)2 Rs 

(a41 

b315) 

for the two-dimensional and the axially symmetric flow cases, respectively. 
Then the corresponding second partial derivatives of pressure are 

EL- 6(rs - ~)P,u,= 

ay' (Ys + 1)=h2 
(B1’1) 
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and 

is=- 8(r, - 1>P&ao' 
ar 2 

(7, + 1)=Rs2 
C3W 

Note that Ts can have values somewhat different than 1.4 if tibra- 
Mona1 and dissociational energies are excited at the shock wave. The 
results of this appendix are consistent if ys is defined by equation (Rl) 
fram the ratio of densities across the shock wave. When additional energy 
modes are excited at the shock wave9 this effective value of ys is not - 
exactly the ratio of specific heats. 

It can be seen that for the case of a yawed two-dimensional body, the 
same relations hold as for the body at zero yaw except '&at the velocity 
UC0 is replaced by the normal component of velocity, U&OS A. Thus the 
yawed two-dimensional body has a second derivative of pressure 

a% _ _ QY, - ~)P,u,~cos~~ 
b-2 (7, + u2Rs2 

N9) 

In the above relations the radius of curvature of the shock wave Rs 
is yet undetermined. In the limit of infinite free-stream Mach number, 
the ratio of shock wave to body curvature, R&b, might be expected to 
approach unity as an upper bound. On the other hand, a value of R&b 
consistent with incompressible boundary-layer solutions may be a reason- 
able lower bound. In this regsrd Eowarth (ref. 7) reports that for two- 
dimensional flow 

a-v% I=--- 
aY Rb 

(320 > 

which, according to equations (a) and (Xl), corresponds to a ratio 

Rs 1 -= 
% Ys-1 

(B=> 

Sibulkin (ref. lg), using a similar analysis finds that 

av 3% -=- 
aY mb (B=) 
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for axially symmetric flow. This corresponds to the ratio 

Rs 4 
Rb - = 3(Ys - 1) 

NACA TN 4229 



NAcA 'IX 4229 49 

1. Allen, H. Julian, and.Eggers, A. J., Jr.: A Study of the Motion and 
Aerodynamic Heating of Missiles Entering the Earth's Atmosphere at 
High Supersonic Speeds. NACA TN 4047, 1957. (Supersedes NACA 
RM A53D28) 

2. Eggers, Alfred J., Jr., Allen, H. Julian, and Neice, Stanford 2.: 
A Comparative Analysis of the Performance of Long-Range Q-per- 
velocity Vehicles. NACA TN 4046, 1957. (Supersedes NACA RM A54Ll0) 

3. Eggers, A. J., Jr., Resneoff, Meyer M., and Dennis, David H.: 
Bodies of Revolution for Minimum Drag at High Supersonic Airspeeds. 
NACA Rep. 1306, 1957. (Supercedes NACA TN 3666) 

4. Sommer, Simon C., and Stark, Jazzes A.: The Effect of Bluntness on 
the Drag of Spherical-Tipped Truncated Cones of Fineness Ratio 3 
at Mach Numbers 1.2 to 7.4. NACA RMA52B13, 1952. 

5. Lamb, Horace: Hydrodynamics. Sixth ed., Dover Pub., 1945. 

6. Stewart, H. J.: The Energy Equation for a Viscous Compressible 
Fluid. Nat. Acad. Sci., VOL 28, 1942, p. 161. 

7. Howarth, L., ed.: Modern Developments in Fluid Dynamics, High Speed 
Flow. Oxford Clarendon Press, 1953. 

8. Cohen, Clarence B., and. Reshotko, Eli: Similar Solutions for the 
Compressible LamInsr Boundary Layer With Heat Transfer and Pres- 
sure Gradient. NAcA Rep. 1293, 1956. (Supersedes NACA TN 3325) 

9. Charters, A. C., and Thomas, R. N.: The Aerodynamic Performance of 
Small Spheres from Subsonic to High Supersonic Velocities. Jour. 
Aero. Sci., vol. 12, no. 4, 1945, pp. 468-476. 

10. Dugundji, John: An Investigation of the Detached Shock In Front of 
a Body of Revolution. Jour. Aero. Sci., vol. 15, no. 12, 1948, 
PP~ 699-705. 

Ill. Heybey, W. H.: Shock Distance in Front of Symmetrical Bodies. 
Naval Ordnance Lab., Rep. 3594, Dec. 24, 1953. 

12. Rose, P. HZ: physical Gas Dynamics Research at the AVCO Research 
Laboratory. AVCO Res. Lab., Rep. No. 9, May 1957. 

13. Hansen, C. Frederick: ApproxFmations for the Thermodynamic and Trans- 
port Properties of High Temperature Air. NACA TN 4150, 1958. 

. 
14. Feldman, Saul: Hypersonic Gas Dynamic Charts for Equilibrium Air. 

AVCO Res. Lab., Jan. 1957. 



50 NACA TN 4229 

15.. Kuo, Y. H.: Dissociation Effects in Hypersonic Viscous Flows. Jour. 
Aero. Sci., vol. 24, no. 5, May 1957, pp. 345-350. 

16. Rose, Peter H ., and Riddell, F. R.: An Investigation of Stagnation 
Point Heat Transfer in Dissociated Air. AVCC Res. Lab. Rep. No. 7, 
1957. 

. 

17. Fay, J. A., and Riddell, F. R.: Theory of Stagnation Point Heat 
Transfer in Dissociated Air. AVCO Res. Lab. Rep. No. 1, April 
1957. (Rev. ed.) 

18. Ames Research Staff: Equations, Tables, and Charts for Compressible 
Flow. NACA Rep. 1135, 1953. 

19. Sibulkin, M.: Heat Transfer Near the Forward Stagnation Point of a 
Body of Revolution. Jour. Aero. Sci., vol. 19, no. 8, 1952, 
PP. 570-571. 



NACA TN 4229 

2 12 
Tem&c~+ur~~ T, "R 

I4 16 18 2C 

Figure l.- Ihtegral. of -thermsI conductivity as a function of temperature. 
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Figure 2.- Heat-transfer rate to the stagmtion region of a blunt, axially 
symmetric shape in hypersonic flight. 
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Chemical reactions frozen, eq. (73) 
- - - Equilibrium conditions, eq. (132) 

26,000 ft/sec velocity 
100,000 ft altitude 

-- -Equilibrium conditions, eq. (132) 
26,000 ft/sec velocity 
150,000 ft altitude 

Figure 3.- Effect of yaw on heat-transfer rates to the stagnation region 
of a blunt cylindrical shape with a cool wall. 
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Figure 4.- Influence of wall temperature on the reduction in stagnation 
region heat flux due to yaw; chemical reactions frozen. 


